The building maintenance scheduled for Friday February 27th at 5:00pm MST has been postponed until 5:00pm March 6th. PSD's website will be down during the maintenance.
 

Pulwarty, R. S., and K. Redmond, 1997: Climate and salmon restoration in the Columbia River basin: The role and usability of seasonal forecasts. Bull. Amer. Met. Soc., 78, 381-397.


ABSTRACT

The Pacific Northwest is dependent on the vast and complex Columbia River system for power production, irrigation, navigation, flood control, recreation, municipal and industrial water supplies, and fish and wildlife habitat. In recent years Pacific salmon populations in this region, a highly valued cultural and economic resource, have declined precipitously. Since 1980, regional entities have embarked on the largest effort at ecosystem management undertaken to date in the United States, primarily aimed at balancing hydropower demands with salmon restoration activities. It has become increasingly clear that climatically driven fluctuations in the freshwater and marine environments occupied by these fish are an important influence on population variability. It is also clear that there are significant prospects of climate predictability that may prove advantageous in managing the water resources shared by the long cast of regional interests. The main thrusts of this study are 1) to describe the climate and management environments of the Columbia River basin, 2) to assess the present degree of use and benefits of available climate information, 3) to identify new roles and applications made possible by recent advances in climate forecasting, and 4) to understand, from the point of view of present and potential users in specific contexts of salmon management, what information might be needed, for what uses, and when, where, and how it should be provided. Interviews were carried out with 32 individuals in 19 organizations involved in salmon management decisions. Primary needs were in forecasting runoff volume and timing, river transit times, and stream temperatures, as much as a year or more in advance. Most respondents desired an accuracy of 75% for a seasonal forecast. Despite the significant influence of precipitation and its subsequent hydrologic impacts on the regional economy, no specific use of the present climate forecasts was uncovered. Understanding the limitations to information use forms a major component of this study. The complexity of the management environment, the lack of well-defined linkages among potential users and forecasters, and the lack of supplementary background information relating to the forecasts pose substantial barriers to future use of forecasts. Recommendations to address these problems are offered. The use of climate information and forecasts to reduce the uncertainty inherent in managing large systems for diverse needs bears significant promise.