

AI4NWP Workshop

Short Range Weather Convection Allowing Models (SRW/CAM) Skill Improvements

29 November 2023

Curtis Alexander

NOAA/GLOBAL SYSTEMS LABORATORY

Why CAMs-LAMs?

Why Convection Allowing Models (CAMs)?

- Captures bulk properties of many hazardous convective weather systems (i.e. rotating updrafts)
- Permits more accurate forecasts of weather conditions in which such hazardous storms may occur
- Employed most often in regional or limited area modeling framework

Why Limited Area Models (LAMs)?

- Reduces the compute expense and complications associated with a global CAM
- Enables rapid data assimilation/cycling with lower lowlatency forecasts than global models
- Emphasizes shorter-range (hours/days) prediction

AI4NWP •

High Resolution Weather Forecasts

Increasing resolution

More terrain and coastal details

More accurate storm structure

Spatial Scales of Varying Scheme Behavior

 \bigcirc

Relevance to Communities

Aviation/Transportation Weather Hazards Tactical and Strategic Planning (0-8 hrs) FAA, Airlines, Aviators, NCAR, MIT/LL, AWC,

Severe Convective Weather Warn on Forecast (0-2 hrs) Severe Weather Watches/Discussions (0-8 hrs) Severe Convective Outlooks (1-2 days) SPC, NSSL, NWS

Hydrology and Quantitative Precipitation Forecasts Flash Flood Watches/Meso Discussions (0-8 hrs) National Water Model Forcing (0-18 hrs) Heavy Rain/Snow Outlooks (1-2 days) WPC, OWP, GLERL, PSL, NWS

Renewable Energy Wind and Solar Power Generation (0-18 hrs) Next Day Decision Support (24-48 hrs) Power Authorities, Energy Companies, ASRE

Composition, Air Quality and Health Wildfire Smoke Concentrations (1-2 days) IMET, ARL, CSL, NWS

What Improvements to CAM NWP Look Like

Aviation Application Collaboration: FAA, NCAR, MIT/LL, AWC

Benefits: less delays, better fuel usage, contributions to safety

	7 2018	3 2019	2020
RAPV1 RAPV2 RAPV3	RAPv	4	RAPv5
HRRRv1 HRRRv2	HRRRv	3	HRRRv4

Major progress for short-range prediction of convection and other hazardous weather

 \bigcirc

What Improvements to CAM NWP Look Like

AI4NWP

What Improvements to CAM NWP Look Like

AI4NWP

 \bigcirc

Very High Resolution (≤ 1 km) Nesting Research

 \bigcirc

AI4NWP

Convection impacts including more accurate initiation and system evolution at 1 km

Very High Resolution (≤ 1 km) Nesting Research

Very High Resolution (≤ 1 km) Nesting Research

In-flight icing potential from increased supercooled liquid water (SLW)/banding at 1 km

AI4NWP •

Better Snow Forecasts: Variable Density Snow Accum

 \bigcirc

Fire Weather Forecasting Advancements

Ongoing Improvements in HRRR Forecasts

AI4NWP

 \bigcirc

- Performance diagram shows CSI / bias
- Illustrates five generations of HRRR skill
- Pre-HRRR: very high bias, low CSI
- HRRRv1: better bias, improved CSI,
- HRRRv2: CSI even better, bias still high
- HRRRv3: bias much better (reduced), some reduction in CSI
- HRRRv4: better CSI, similar bias

HRRR Deconstructed

SUALC AND ATMOSPHER															
) INNOLINN	Global Weather, Waves & Global Analysis	GFS/GDAS v16.3													
Global Systems Lab	Global Weather & Wave Ensembles, Aerosols	GEFS v12.3											Medium Range &		
	Global Ocean Analysis	GODAS v2					GFS v17, GDAS v17	/ // Co	oupled Reanalysis &					Subseasonal	
	Short-Range Regional Ensembles	SREF v7.1				GEFS v13 GODAS v	/ Sea	asonal Reforecast			GF	GFS v18/	Marina 9		
	Regional Weather (Parent Domain)	NAM v4.2											FS v14/	Cryosphere	
	Regional Weather (Parent Domain)	RAP v5.1													
	Global Ocean & Sea-Ice	RTOFS v2.3											Seasonal		
	Seasonal Climate	CDAS2 v1.2 / CFS v2.3													
	Regional Hurricane 1	HWRF v13.2									FC			Hurrisono	
	Regional Hurricane 2	HMON v3.2			ПАГ	-5 V2		HAFS VS			IF3 V4			numcane	
	Regional High Resolution CAM 1	HiRes Window v8.1								[
	Regional High Resolution CAM 2	NAM nests / Fire Wx v4											Sho	ort-Range Regional	
	Regional High Resolution CAM 3	HRRR v4.1				KKF3 VI					RRFS v2, WoFS v2			&	
	Regional HiRes CAM Ensemble	HREF v3.1										Reg	ional At	tmospheric Composition	
	Regional Air Quality	AQM v6.1	AQM v7												
	Regional Surface Weather Analysis	RTMA / URMA v2.10			3DRTN	1A/URMA v1				3DRTM	A/URMA v	2			
	Atmospheric Transport & Dispersion	HySPLIT v8.0					HySPLI	T v9				HySPLI	Γ v10	Air Dispersion	
	Coastal & Regional Waves	NWPS v1.4												Coastal	
	Great Lakes	GLWU v2.0						GLWU	v3		[GLWU	v4	Lakes	
	Regional Hydrology	NWM v2.1	NWM v3							NWM	v4			Hydrology	
	Space Weather 1 - WAM / IPE	WFS v1.0								· · · 2				Space Weather	
	Space Weather 2	ENLIL v1							WF	-3 VZ				Space weather	
	EMC Verification System	_		EVS v1				EVS v2				EVS v3		Verification	

ullet

 \bigcirc

RRFSv1 Grids

Global Rapidly Updating Storm-Scale Model

Global storm-scale (3 km) forecasts with scale-aware physics suite:

- SW/LW Radiation: RRTMG
- Microphysics: Thompson
- Boundary Layer: MYNN
- Surface Layer: GFS

AI4NWP

Land Surface Model: Noah

00 UTC 29 Aug 2019 1 km AGL Simulated Radar Reflectivity 0-96 hr 3 km Forecast

96 hr (4 day) global 3 km fcst13,068 processors (363 nodes)6 hrs of wall clock time per 24 hr fcst

 \bigcirc

RRFSv1 Challenges: QPF Warm Season Bias

3 km Eastern CONUS QPF Frequency Bias 2023

Forecast Ensemble Characteristics

- Deterministic forecasts represent only one possible realization of a forecast outcome "i.e. swing and hit/miss"
- Model forecast ensembles are a common technique to (potentially) capture all possible forecast outcomes (spread)
 - Each ensemble member solution equally likely
 - Diversity of solutions proportional to mean forecast error of day
 - Control (deterministic) member solution should fall within envelope of all member solutions

- UFS provides common model framework to compose single model ensembles and address challenge of underdispersion
- Ensemble design is active research:
 - Initial and/or lateral boundary perturbations
 - Time-lagging across multiple initialization cycles
 - Multi- and/or stochastically perturbed physics
 - Multimodel (dynamic core diversity)

Regional ensembles (SREF and HREF) can generate "artificial" spread through biases resulting in multi-modal distributions or regularly favored members that are not ideal

Forecasted snowfall timeseries at DCA across multi-model SREF ensemble with separation by model above/below mean (black)

CONUS forecasted precipitation biases between members for a single-model ensemble (left) and multi-model HREF ensemble (right)

Global Systems Laboratory

AI4NWP

 \bigcirc

Ensemble DA & Forecasting ⇒ Better Probabilities

30-h lead-time: get 1 hit

12-h lead-time: 7 of 9 hits

Radar observations

event

- Shorter forecasts decreased spread, increased confidence
- Stochastic physics to create spread

Ensemble Forecast Challenge: Spread vs Error

AI4NWP

 \bigcirc

Ensemble Forecast Challenge: Spread vs Error

AI4NWP

 \bigcirc

FIELD	LEVEL	DETERMNISTIC METRIC	ENSEMBLE METRIC	PROBABILISTIC METRIC	TEMPORAL ATTRIBUTE	NOTABLE THRESHOLDS	REGION	VERIFICATION APPROACH	VALIDATION SOURCE	CLIMATOLOGY SOURCE
TIER 1										
Heights	Profile	BCRMSE + Bias	RMSE of Ens. Mean + Ensemble Spread	ROC + Reliability + BSS	3-Hourly		Full Domain	Grid-to-obs	Raobs + Aircraft	
Temperature	Profile	BCRMSE + Bias	RMSE of Ens. Mean + Ensemble Spread	ROC + Reliability + BSS	3-Hourly	0°C for 850 temps, 12°C for 700 temps	Full Domain	Grid-to-obs	Raobs + Aircraft	
U and V Wind Components	Profile	BCRMSE + Bias	RMSE of Ens. Mean + Ensemble Spread	ROC + Reliability + BSS	3-Hourly	30, 40 kt at 700-hPa 50 kt at 850-hPa	Full Domain	Grid-to-obs	Raobs + Aircraft	
Specific Humidity	Profile	BCRMSE + Bias	RMSE of Ens. Mean + Ensemble Spread	ROC + Reliability + BSS	3-Hourly	15 g/kg at 850 and 925-hPa	Full Domain	Grid-to-obs	Raobs + Aircraft	

https://dtcenter.org/events/2021/2021-dtc-ufs-evaluation-metrics-workshop/final-metrics-lists

FIELD	LEVEL	DETERMNISTIC METRIC	ENSEMBLE METRIC	PROBABILISTIC METRIC	TEMPORAL ATTRIBUTE	NOTABLE THRESHOLDS	REGION	VERIFICATION APPROACH	VALIDATION SOURCE	CLIMATOLOGY SOURCE
TIER 2										
Precipitation	Surface	Total Interest (MODE), FSS, and Contingency Table Counts	FSS + CTC + Rank Histogram	Reliability Diagram	Hourly to f24 and then 3-hourly, also 24-hourly	3h: 0.25", 0.5", 1" (include 0.1" in winter) and 24h: 1" and 2" (include 0.5" in winter)	CONUS divided into fourths + Alaska	Grid-to-grid, grid- to-obs	ССРА	
Temperature	Sfc/2-m	BCRMSE + Bias	RMSE of Ens. Mean + Ensemble Spread + Ranked Histogram	ROC + Reliability + BSS	Hourly to f24 and then 3-hrly	0°C, 60°F (when paired with high Td)?	CONUS divided into fourths + Alaska	Grid-to-obs	METARS + some mesonet + marine obs	
Wind	Sfc/10-m	BCRMSE + Mean Error Bias	RMSE of Ens. Mean + Ensemble Spread + Ranked Histogram	ROC + Reliability + BSS	Hourly to f24 and then 3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	METARS + some mesonet + marine obs	
Dew Point	Sfc/2-m	BCRMSE + Threshold Bias (do not compute stats for low values)	RMSE of Ens. Mean +	ROC + Reliability + BSS	Hourly to f24 and	50, 60, 70°F (possibly 40 and 50 in the west?); need lower threshold for fire wx	CONUS divided into	Grid-to-obs	METARS + some	
Wind Speed	Sfc/10-m	BCRMSE + Bias	RMSE of Ens. Mean + Ensemble Spread + Ranked Histogram	ROC + Reliability + BSS	Hourly to f24 and then 3-hrly	25, 34, 48 kt (marine) 30 kt (blizzard) 20 (fire wx)	CONUS divided into fourths + Alaska	Grid-to-obs	METARS + some mesonet + marine obs	
Simulated Reflectivity	Composite	Fractions Skill Score	FSS (of neighborhood max - 40 km radius)	Fractional Skill Score + Reliability Cuve	Hourly (perhaps sub hourly for the first few hours?)	- 30, 40, 50 dbz and 20 for snow	CONUS divided into fourths + Alaska	Grid-to-grid	MRMS Mosaic Composite	
Updraft Helicity	2-5 km	FSS, CTC	RMSE of Ens. Mean + Ensemble Spread	BSS + Reliability + ROC	24-hrly	99th percentile	SPC Convective Outlook areas of "Marginal" or greater	Grid-to-grid	SPC storm reports	Model's Own Climatology
PBL Depth	N/A	BCRMSE + Mean Error Bias	RMSE of Ens. Mean + Ensemble Spread	BSS	Hourly to f24 and then 3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	RAOBs, METAR Ceilometer, ACARS	
Visibility	Sfc	Contigency Table Counts	FSS + CTC + Rank Histogram	Fractional Skill Score + Reliability Cuve	Hourly	flight rules	CONUS divided into fourths + Alaska	Grid-to-obs	METARS	
Latent Heat Flux	Surface	BCRMSE + Bias	RMSE of Ens. Mean + Ensemble Spread	Reliability Diagram	Hourly to f24 and then 3-hrly		North America/CONUS + finer granularity (NCDC)	Grid-to-obs	State Mesonets, SGP ARM, AmeriFlux	

FIELD	LEVEL	DETERMNISTIC METRIC	ENSEMBLE METRIC	PROBABILISTIC METRIC	TEMPORAL ATTRIBUTE	NOTABLE THRESHOLDS	REGION	VERIFICATION APPROACH	VALIDATION SOURCE	CLIMATOLOGY SOURCE
TIER 3										
Precipitation Type	Sfc	CTC + FSS	FSS (of neighborhood max - 40 km radius) + Rank Histogram	Reliability Diagram	Hourly to f24 and then 3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	METARS + mPING	
Snowfall Accumulation	Sfc	FSS+CTC	FSS + CTC + Rank Histogram	FSS + Reliability Curve	6h, 24h	2-4-8 (6-hrly) 2-5-10 (24-hrly)	CONUS divided into fourths + Alaska	Grid-to-obs	NOHRSC	
Sea Level Pressure	Surface	BCRMSE + Mean Error Bias	RMSE of Ens. Mean + Ensemble Spread + Ranked Histogram	ROC + Reliability + BSS	Hourly to f24 and then 3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	METARS + some mesonets	
Surface-Based CAPE	Surface Parcel	стс	RMSE of Ens. Mean + Ensemble Spread	Reliability Curve	3-hrly	500, 1000, 2000 (and 250 for low CAPE SVR)	CONUS divided into fourths + Alaska/North America/SPC Convective Outlook Areas	Grid-to-obs	RAOBs + aircraft	
Ceiling	N/A	стс	Contigency Table Counts	FSS + CTC + Rank Histogram	Hourly to f24 and then 3-hrly	flght rules	CONUS divided into fourths + Alaska	Grid-to-obs	METARS	
Deep Layer Shear	0-6 km	Fraction skill score	Reliability	Reliability Curve	3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	RAOB and aircraft data	
Updraft Helicity	0-3 km	FSS, CTC	RMSE of Ens. Mean + Ensemble Spread	BSS + Reliability + ROC	24-hrly	99th percentile	SPC Convective Outlook areas of "Marginal" or greater	Grid-to-grid	SPC storm reports	Model's Own Climatology
Cloud Fraction	Total	CTC + FSS	CTC + FSS + Ensemble Spread	Reliability+ROC	3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	Satellite- derived cloud fraction (GOES, VIIRS)	
Soil Moisture	0-10 cm	Bias	RMSE of Ens. Mean + Ensemble Spread	BSS	3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	International Soil Moisture Network and Soil Climate Analysis Network	
Soil Temperature	0-10 cm	Bias	RMSE of Ens. Mean + Ensemble Spread	BSS	3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	International Soil Moisture Network and Soil Climate Analysis Network	

FIELD	LEVEL	DETERMNISTIC METRIC	ENSEMBLE METRIC	PROBABILISTIC METRIC	TEMPORAL ATTRIBUTE	NOTABLE THRESHOLDS	REGION	VERIFICATION APPROACH	VALIDATION SOURCE	CLIMATOLOGY SOURCE
TIER 4										
Lapse Rates	0-3 km	RMS Error	RMSE of Ens. Mean + Ensemble Spread	BSS	Hourly		North America/CONUS divided into fourths + Alaska	Grid-to-obs	RAOBs	
Wind Shear	0-2 km	Contingency Table Counts, Equitable Threat Score. Treat as a continuous variable in addition to categorical (FBias, Bias, RMSE)	RMSE of Ens. Mean + Ensemble Spread	CRPSS	Hourly to f24 and then 3-hrly		CONUS divided into fourths + Alaska	Grid-to-grid and grid-to-obs	SPC mesoanalysis/3DRTMA, RAOBs, VAD winds	
Time-Derived Height (Falls/Rises)	500-hPa	RMSE + Mean Error Bias	RMSE of Ens. Mean + Ensemble Spread	BSS	3-hrly		CONUS divided into fourths + Alaska + Some sort of HI/PR region	Grid-to-grid and grid-to-obs	ECMWF Analysis / RAOB data	
Cloud Fraction	Low	CTC + FSS	CTC +FSS + Ensemble Spread	Reliability + ROC	3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	Satellite-derived cloud fraction (GOES, VIIRS)	
Cloud Fraction	Middle	CTC + FSS	CTC +FSS + Ensemble Spread	Reliability + ROC	3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	Satellite-derived cloud fraction (GOES, VIIRS)	
Cloud Fraction	High	CTC + FSS	CTC +FSS + Ensemble Spread	Reliability + ROC	3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	Satellite-derived cloud fraction (GOES, VIIRS)	
Sensible Heat Flux	Surface	BCRMSE Error, Bias	RMSE of Ens. Mean + Ensemble Spread	BSS	Hourly to f24 and then 3-hrly		North America/CONUS + finer granularity (NCDC)	Grid-to-obs	State Mesonets, SGP ARM, AmeriFlux	
Soil Moisture	10-40 cm	Bias	RMSE of Ens. Mean + Ensemble Spread	BSS	3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	International Soil Moisture Network and Soil Climate Analysis Network	
Soil Temperature	10-40 cm	Bias	RMSE of Ens. Mean + Ensemble Spread	BSS	3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	International Soil Moisture Network and Soil Climate Analysis Network	
Relative Humidity	Sfc/2-m	BCRMSE + Threshold Bias	RMSE of Ens. Mean + Ensemble Spread	ROC + Reliability + BSS	Hourly to f24 and then 3-hrly	25,50,75	CONUS divided into fourths + Alaska	Grid-to-obs	METARS + some mesonet + marine obs	

AI4NWP • Seasonal Performance

- CAMs provide precision and details for a variety of high-impact weather hazards
- CAM precision does come with some accuracy challenges time-space displacements, precip biases
 → AI pattern recognition/bias correction
- CAM expense significant (compared to coarser regional/global) in compute, storage and dissemination
 - \rightarrow AI component replacement
- Established community metrics for evaluating CAM performance
 - \rightarrow AI performance for discrete/categorical measures
- Desire for more efficiency in running CAMs (GPUs, AI, etc...)
 - \rightarrow AI component replacement
- Need for more DA/forecast ensemble members and improved ensemble design

 \rightarrow AI hybrid/augmentation

- Desire for storm-scale CONUS analysis (~1 km, 3D, 15 min?) reanalysis dataset
- Questions about CAM dataset fragility given frequent changes to model physics/DA and dycore?

 \rightarrow AI training needs/robustness

